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An annoying paradox which has plagued the "naive" description of density 
perturbations in homogeneous and isotropic cosmological models has been the 
gauge-dependent character of this description. The corollary of this observation 
is that only gauge-invariant quantities have any inherent physical meaning. Thus 
the present paper develops, from a new geometric point of view, a totally gauge- 
invariant formulation of perturbation theory applicable to the case of a general 
perfect fluid with two essential thermodynamic variables. Precisely speaking, the 
main purpose here is the systematic construction of a complete set of basic gauge- 
invariant variables. This set consists of 17 linearly independent, not identically 
vanishing quantities. It turns out that these quantities can be used to divide the 
infinitesimal perturbations into equivalence classes: two perturbations P and P'  
are said to be equivalent if their difference is equal to the Lie derivative of the 
background solution of Einstein's propagation equations with respect to an 
arbitrary vector field on the space-time manifold. In fact, the gauge-invariant 
perturbations, whose mathematical definition is best understood by introducing 
the elements of a certain quotient space, are uniquely determined from the basic 
variables. An additional welcome feature is that any gauge-invariant quantity can 
be constructed directly from the basic variables through purely algebraic and 
differential operations. In a companion paper, these results are used to derive the 
full, gauge-invariant system of equations governing the evolution of basic 
variables, In this sense, then, the present analysis is complete. 

1. I N T R O D U C T I O N  

The universe appears to be isotropic about every point in it and the 
mass distribution is close to homogeneous in the large-scale average, as far 
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as we can detect. Thus the Robertson-Walker metrics or line elements are 
fundamental in the standard big-bang model of the universe. The mathematical 
framework in which the Robertson-Walker metrics occur is that of general 
relativity. Structure in the universe (galaxies, clusters of galaxies, etc.) is 
thought to have formed as a result of the growth, through gravitational 
collapse, of small spatial inhomogeneities in an otherwise smooth background 
ideal fluid. In order to understand the evolution of these small irregularities, 
one has to consider the equations of linear perturbation theory (Lifshitz, 
1946; Lifshitz and Khalatnikov, 1963; Hawking, 1966) and over the past 15 
years cosmologists have studied various solutions of such equations, usually 
only for the case of a barotropic perfect fluid where the pressure p and the 
energy density e are functionally dependent: p = p(e). 

The theory of linearized perturbations in its "naive" formulation has 
not been completely successful, however. Since the basic principles of general 
relativity are covariantly expressed, one easily verifies that any solution of 
the linearized field equations can be unique only up to a Lie derivative of 
the background solution with respect to an arbitrary vector field on the 
space-time manifold (Sachs, 1964; Ehlers, 1973). As a consequence, some 
cosmologists (Gerlach and Sengupta, 1978; Bardeen, 1980; Ellis and Bruni, 
1989) are dissatisfied with the naive approach, for its equations appear to 
show that instead of a single solution to any particular set of gravitational 
circumstances there is an infinitude of equivalent solutions. The usual 
approach to the derivation of the deterministic equations governing linearized 
perturbations in cosmology has been to impose at the beginning a gauge 
condition to simplify the form of the metric and/or matter perturbations and 
then work directly with the metric tensor components and matter variables. 
In general, however, such approaches are plagued by the problem that the 
choice of variables to represent the density inhomogeneities in an almost- 
Robertson-Walker universe model depends on the gauge chosen. The corol- 
lary of these observations is that only gauge-invariant quantities can have 
any inherent physical meaning. 

This is the first in a pair of articles (Banach and Piekarski, 1996), the 
overall objective of which is the systematic formulation of a new geometric 
approach to the theory of perturbations in homogeneous and isotropic cosmo- 
logical models. Most of the discussion presented here will concern the case of 
a general perfect fluid where there are two essential thermodynamic variables 
(Misner et al., 1973). We shall remove the necessity for referring to an 
infinitely large number of solutions to one problem at all by introducing a 
complete set of basic variables (17 linearly independent, not identically van- 
ishing gauge-invariant quantities) that in no way depend on the choice of a 
vector field for the Lie derivative of the background. It turns out that these 
basic variables can be used to divide the infinitesimal perturbations into 
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equivalence classes: two different solutions P and P' of the linearized field 
equations are equivalent if there is a transformation of the Lie type which 
carries P into P' and vice versa. Strictly speaking, then, the object of most 
physical interest is not just one perturbation P, but a whole equivalence class 
[P] of all perturbations P' which are equivalent to P. In fact, there is something 
very special about the way the equivalence class [P] is related to the set of 
basic gauge-invariant variables; for once we completely specify this set, the 
equivalence class [P] is uniquely determined from it and conversely. An 
additional welcome feature is that any complicated gauge-invariant quantity 
can be constructed directly from the basic variables through purely algebraic 
and differential operations. Because of these two properties of the basic 
variables, our analysis seems to be complete. 

In discussing the above problems, the starting point will be the develop- 
ment of a new geometric machinery associated with the existence of a pre- 
ferred family of world lines and hence of a canonical scalar product in the 
space of gauge-dependent perturbations. The main idea we wish to pursue 
is that if this scalar product is systematically defined, one reasonable method 
for obtaining or generating a countably infinite set of gauge-invariant quanti- 
ties is to use the standard procedure of orthogonalization (the Schmidt orthog- 
onalization). Such a procedure can indeed be effectively applied, and some 
aspects of the original formulation of perturbation theory reconsidered. We 
shall study these issues quantitatively, at least in simple cases, in the first 
part of this article. More explicitly, based on the notion of a background 
solution, we define there a natural scalar product in the space of gauge- 
dependent perturbations by using the Robertson-Walker metric tensor and the 
unperturbed fluid four-velocity vector. Of course, given the gauge-invariant 
quantities, it is also useful to determine linear propagation equations for these 
quantities. We turn to this in the companion paper (Banach and Piekarski, 
1996). Here it suffices to say that the resulting dynamical equations are 
deterministic, i.e., they lead to a unique solution for the basic gauge-invariant 
variables. Thus our approach sidesteps the usual problems. Nevertheless, it 
is perhaps important to stress that the gauge invariance in itself does not 
completely resolve the ambiguity of what one means by a physical solution 
to the linearized field equations, and some extra arguments are always neces- 
sary in order to eliminate the unphysical solutions of gauge-invariant equa- 
tions. We discuss these new issues in Banach and Piekarski (1996, Sections 
3.2 and 4.2). Here we only mention that such additional and unavoidable 
solutions of gauge-invariant equations are not the same thing as the spurious 
"gauge mode" solutions and thus they must be distinguished from them. 

A totally g~tuge-invariant formulation of the linearized Einstein field 
equations was originally proposed by Gerlach and Sengupta (1978), and 
initial aspects of our formalism have been developed in various papers [see, 
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e.g., Sachs (1964) and Ehlers (1973)]. Bardeen's (1980) major paper deter- 
mined a set of gauge-invariant quantities that are related to density perturba- 
tions. Based on Hawking's pioneering analysis (Hawking, 1966), Ellis and 
Bruni (1989) gave in turn a simple alternative representation of density 
fluctuations. In the past, however, comparatively little attention has been 
focused upon the general problem of defining the equivalence class [P] in 
terms of a complete set of basic gauge-invariant variables; and, as far as we 
are aware, the explicit description of this equivalence class given here has 
not been obtained before. Moreover, much of the literature on relativistic 
hydrodynamics considers only barotropic perfect fluids. Our discussion will 
not make this "unphysical" restriction. Instead, the emphasis in this paper 
will be upon nonbarotropic perfect fluids where there are two essential thermo- 
dynamic variables, so that the simple equation of state p = p(e) does not 
hold. This framework is sufficiently flexible and broadly based that it can 
be easily extended to materials more complex than we have considered here. 

Another remark is also in order. Most analyses of inhomogeneities in 
an expanding universe have categorized the metric and matter perturbations 
into three distinct types: scalar, vector, and tensor perturbations. The generality 
of our geometric formulation allows us to show that the unique and transparent 
characterization of gauge-invariant perturbations is independent of this cate- 
gorization. Nevertheless, in a companion paper (Banach and Piekarski, 1996) 
we briefly discuss how our gauge-invariant variables relate to those obtained 
by the technique of harmonic decomposition, which is also a very useful 
method in perturbation theory. 

The program of this paper is as follows. In Section 2, we exploit the 
viewpoint that the direct way to formulate linear (or higher order) perturbation 
theory for the full nonlinear system of equations is to use one-parameter 
families of exact solutions to this system. In Section 3, some useful vector 
spaces are defined and the concept of the infinitesimal perturbation is intro- 
duced. In Sections 4 and 5, we define a complete set of basic gauge-invariant 
variables. In Section 6, we prove that this set enables the infinitesimal pertur- 
bations to be divided into equivalence classes: two different perturbations P 
and P' are said to be equivalent if they differ by the action of an "infinitesimal 
diffeomorphism" on the background solution. Section 7 concludes the paper 
by summarizing its main results. In the Appendix, we show that any compli- 
cated gauge-invariant quantity is obtainable directly from the basic variables 
through purely algebraic and differential operations. 

Our primary purpose here is to exhibit the general structure of perturba- 
tion theory. Thus attention will, in large part, focus upon such conceptual 
matters as how one might formulate exactly a notion of basic gauge-invariant 
variables in terms of which to characterize the time development of the 
perturbation. As regards the existence of linear perturbations, mathematical 
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questions of this kind have been largely answered by D'Eath (1976). The 
systematic physical interpretation of gauge-invariant variables and the deriva- 
tion of the linear propagation equations governing their evolution will be 
presented in a companion paper (Banach and Piekarski, 1996). Comparisons 
with other approaches are also given there. 

2. PRELIMINARIES 

2.1. Nonbarotropic Perfect Fluids 

The fundamental equations of general relativity are Einstein's equations 
given by 

1 
R~I~ _ 2R ~ g,~13 = T~I3 (2.1) 

where R "1~ is the Ricci tensor; R~ is the curvature tensor; g,,13 is the contravari- 
ant metric tensor; and T"~ is the stress-energy tensor. We choose units so 
that the Einstein gravitational constant 8"rrG/c 4 equals one (8"rrG = c = 1). 
Greek indices will range from 0 to 3, Latin indices from 1 to 3. It is assumed 
throughout that the space-time metric g,,l~ has signature ( - ,  + ,  +,  +). 

For a perfect fluid, T"~ takes the form 

T '~f3 = (e + p)u'~u f3 + pg,~f3 (2.2) 

where e is the energy density, p is the pressure, and u '~ is the four-velocity 
of matter (u~'u~, = -1 ) .  The values of e and p are assumed to be fixed 
uniquely by two thermodynamic variables, e.g., by the number density n and 
the temperature T as measured in the rest frame of the fluid element: 

e = e(n ,  T), p = p ( n ,  T )  (2.3) 

In this sense the fluid is a nonbarotropic perfect fluid. The number flux 
vector, namely 

IV a = n u  a (2.4) 

obeys the "continuity law" 

N~.,~ = 0 (2.5) 

Here, of course, a semicolon denotes the covariant derivative of N ~ with 
respect to g,~13- 

With equations (2.3), the continuity law and Einstein's field equations 
place five constraints (balance of number density and local conservation of 
energy and momentum) on /W and T ~ and six constraints on the ten g,~13, 
leaving four of the g,~ to be adjusted by the choice of the "gauge condition." 
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2.2. One-Parameter  Families of  Exact Solutions 

In an exact description, the full nonlinear system of equations, which 
consists of equations (2.1)-(2.5), would become a complicated set of equations 
for the evaluation of ~ := (g~,u%n,T). Solving this system is not simple, 
but it turns out that if the matter is only slightly perturbed away from 
the background Robertson-Walker cosmological model, then another device 
worth noting is that of using perturbation theory to obtain the linearized 
system of field equations. 

The basic assumptions of this theory, which seem necessary in order to 
give a clear idea of what the perturbation method is to be (Ehlers, 1973; 
Banach and Piekarski, 1994a), may be formulated as follows: Consider an 
open interval I := ( -d ,  d) of R, d > 0. For each �9 ~ I there exists a classical 
solution ~ to the full nonlinear system of equations 

~ := (g,~l~(�9 u,~(�9 n(e,.), T(�9 (2.6) 

such that the objects appearing on the right-hand side of equation (2.6) are 
continuously differentiable with respect to �9 ~ I. The set of classical solutions 
defines a function space, and a one-parameter family of exact solutions given 
by {~d,; �9 ~ I} may be thought of as a curve in the function space passing 
through the "point" ~d0 which we call the background solution. [As already 
remarked by Bardeen (1980) and Ellis and Bruni (1989), in a cosmological 
setting mathematical questions regarding the validity of perturbation theory 
and the existence of such curves have been largely answered by D'Eath 
(1976). The objections raised to this method by Fischer et al. (1980) do not 
apply here, because the solutions ~,  contain matter; see also the discussion 
in Section 2.3 of Banach and Piekarski (1996).] 

The central theme of perturbation theory is the construction of the 
mapping �9 ~ ~J~ for small values of �9 starting with a given solution ~o, 
which may be the Robertson-Walker solution. The "tangent" to the curve 
�9 ~ ~J, considered at �9 = 0 is defined by 

~ 0  := (Q~, U% noM, To K) (2.7) 

where 

,~=o' \ a~ ],~=o 
no := (n)r~=o, To :=  (T),~=o, To > 0 (2.8b) 

,io l M := -- K := (2.8c) 
n,, \0 Loo 
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Clearly, the pair ('-~o,~q3o) "models" the curve �9 ~ ~,  at �9 = 0. Just as in 
Ehlers (1973), the tangent 3~o is said to be an in f in i tes imal  perturbation of 
'~o. Interpreting no and To, we call no the background number density and To 
the background temperature. We gain an intuitive feeling for the meaning of 
M and K if we say that they are, respectively, the fractional variations in 
density and temperature along a world line. The quantities Q'~a and U '~ 
represent in turn changes in the metric and in the matter velocity. 

To derive a closed set of governing equations for perturbations for the 
system, we must differentiate Einstein's field equations (2.1) and the equation 
of balance of number density (2.5) with respect to e and then set �9 equal to zero: 

R ~ - = R ~ g  ~ = (2.9a) 
,~:0 \ o�9 ],,=0 

( ~ N  ~ ):~, = 0  (2.9b) 
l e = 0  

Equations (2.9a) and (2.9b) are linear equations for ~ 0 ,  i.e., they can be 
expressed in the form (Wald, 1984) 

%(~o)  = 0 (2.10) 

where % is a linear differential space-time operator acting on 5q30. If we can 
solve equation (2.10) for 8'~o, then q3o + �9 8~0 should yield a good approxima- 
tion to q3, for sufficiently small �9 and issues of cosmological interest thus 
can be investigated. 

As discussed in detail by Ehlers (1973) and Wald (1984), there is a 
gauge freedom in general relativity corresponding to the group of diffeo- 
morphisms of space-time. Within the framework of a linear approximation, 
this implies that two perturbations ~ o  and ~ represent the same perturbation 
if (and only if) they differ by the action of an "infinitesimal diffeomorphism" 
on the background solution '~o- An infinitesimal diffeomorphism and its action 
on ~0 can be described in terms of a vector field v on the space-time manifold 
X. Precisely speaking, elementary inspection shows that the change in a 
perturbation induced by v is the Lie derivative .~,, of ~60 with respect to v. 
Thus ~ o  and ~q30 + ~vq30 represent the same physical perturbation (the 
equivalence class [~'~o] of ~0 ) ,  and clearly ~q30 satisfies the linearized field 
equations (2.10) if and only if 8~0 + ~vu30 does. 

The usual approach to the derivation of the equations governing linear- 
ized perturbations in cosmology has been to impose at the beginning a gauge 
condition to simplify the form of the tangent ~ o .  However, as observed 
already by Ellis and Bruni (1989) [see also Bardeen's (1980) major paper], 
"the resulting problem is that the quantity noM (the variation in density along 
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a single world line) often calculated in perturbation calculations is completely 
dependent on the gauge chosen, and unless this gauge is fully specified the 
modes discovered for this quantity are spurious modes (due to residual gauge 
freedom); while if it is fully specified, its relation to what we really want to 
know (the spatial variation of density in the universe) is convoluted and 
difficult to interpret." 

The corollary of this observation is that only a gauge-invariant approach 
to cosmological density fluctuations can have any inherent physical meaning. 
Consequently, the object here and in a companion paper (Banach and Piekar- 
ski, 1996) will be the systematic development of such an approach. 

3. FURTHER DEFINITIONS CONCERNING THE 
INFINITESIMAL PERTURBATION 

3.1. Some Useful Vector Spaces 

At this stage, one is in a position to address the issue of deriving the 
concept of an infinitesimal perturbation from a slightly more systematic point 
of view. However, before passing on to this problem, it is important to first 
define some useful vector spaces. This will, among other things, serve to 
clarify the geometric content of perturbation theory described in Section 2.2. 

Consider a local coordinate system (x ~) with four functions x ~, a = 0, 
.... 3, whose values x~(x) are the coordinates of the point x of the space-time 
manifold X. If we define b~ and b,,13 by 

0 
b,, := (3.1a) 

0x ~ 
and 

l(a o a a) 
b,~a := ~ ~-~ (~ ~x~ + ~--~ | ~--~ (3.1b) 

then {b~,} is a coordinate basis for vectors and {b~,a} is a coordinate basis 
for all symmetric contravariant tensors of rank two. Now, using the terminol- 
ogy and notation of Section 2.2 [see, e.g., equation (2.6)], it follows that for 
each �9 ~ L g '~(e ,x )  are the components of the contravariant metric tensor 
g( �9  with respect to { b~a }: 

g(e,x)  = g'~a(�9 (3.2) 

Similarly, u~'(�9 are the components of the normalized four-velocity u(�9 
with respect to { b,~ }: 

u( �9  = u'~(e,x)b~, (3.3) 

For each x ~ X in a coordinate domain, let Vx denote the set of all 
symmetric contravariant tensors of rank two and let Wx denote the set of all 
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contravariant vectors; these tensors and vectors are defined at x. It is obvious 
that Vx and Wx are vector spaces. Moreover, given Vx and Wx, one easily 
verifies that 

g(e,x) ~ V~, u(e,x) E W~ (3.4) 

This conclusion holds for each e E L even though g(e,x) is a nonsingular 
second-rank, symmetric tensor and u(e,x) is a timelike, unit-magnitude vector: 

detllg~(e,x)ll ~ 0 (3.5a) 

g~,~(e,x)u~(e,x)uf~(e,x) = - 1 (3.5b) 

From equation (3.5b) it follows at once that the four-velocity u~(e, .) cannot 
be defined without first introducing the metric g~13(e,'). 

In this paper, the background space-time considered is described by a 
Robertson-Walker metric. We shall present the detailed calculations only for 
the case of zero spatial curvature, k = 0, in order to simplify the discussion. 
However, our approach can easily be extended to allow for nonzero back- 
ground three-space curvature (k = +__1), and we will deal with the most 
important aspects of this extension in Sections 5.2 and 6. By an appropriate 
choice of coordinates for the space-time manifold X, the contravariant met- 
ric tensor 

g(o)(X) = g(0)x := g(e,x)l~=0 (3.6) 

then reduces to the familiar form 

g(o)(X) = -boo + R-2(t)~rSbr~ (3.7) 

where t := x ~ and where R(t) is the expansion factor. As to the meaning of 
~r~, this symbol represents the Kronecker delta. Of course, in equation (3.7) 
Einstein's summation convention is used. 

With these notions, the geometrically preferred four-velocity 

can be written as 

U(o)(X) := u(e,x),,=0 (3.8) 

U(o)(X) = bo (3.9) 

Let {dx"} be a basis of  one-forms dual to a basis {b~}. Further, introduce 
the following useful abbreviations: 

b e := d ~  (3.10a) 

1 
b '~ := ~ (dx '~ | dx 13 + dx ~ | dx ~) (3.10b) 
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Denoting by gRW the k = 0 Robertson-Walker metric, we then find from 
equation (3.7) that 

gRW = _bOO + R2(t)~rsbrS (3.11) 

where again G.~ represents the Kronecker delta. 
It will be convenient to introduce the quantity h(e,x), which measures 

the relative size of the "actual" number density n(e,x) compared to the 
background number density no(t). Thus we set 

1 
~(~,x) := n(~,x) E Rl := R (3.12a) 

no(t) 

Accordingly, we define T(e,x) by 

1 
T(e,x) := - -  T(e,x) ~ R2 := R (3.12b) 

To(t) 

where T(e,x) is the "actual" temperature and To(t) is the background tempera- 
ture. Here R~ and R2 are one-dimensional vector spaces, each endowed with 
the canonical structure of a set of real numbers: R~ = R_: = R. In view of 
equations (3.12), we regard ~(e,x) as a member of RI and T(e,x) as a member 
of R2. 

Some aspects of perturbation theory can be most easily discussed by 
constructing a vector space ~W x, which is the (external) direct sum of Vx, W~, 
Ri, and R2 (Greub, 1975). The manner in which 

and 

~ := Vr ~ Wx@) Ri O R 2 (3.13) 

~/" := LI ~W'x (3.14)  
x ~ X  

form the natural geometric objects defined on the space-time manifold X will 
become clear in the text below. 

3.2. The  S tructure  of  

One should keep in mind that ~ is the vector bundle over a space-time 
manifold X obtained by giving W := Ux~x ~V'x its natural structure and its 
natural projection onto X (Choquet-Bruhat et al., 1989). Thus the projection 

maps each point of Wx into x. The idea underlying the introduction of 
is simply this: After specifying ~J0 and replacing 

~J~(x) := (g~l~(~,x), u~(~,x), n(~,x), T(~,x)) (3.15) 
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by 

C(e,x) := g(e,x) �9 u(e,x) �9 h(e,x) e T(e,x) (3.16) 

as is always possible, the solution ~ of Einstein's field equations and the 
equation of balance of number density can be identified with an appropriate 
cross section of ~t/'; this cross section is given by x ~ q3,(x) or by 

X ~ x ~ C(e,x) e %t/" x (3.17) 

The "smooth" curve e ~ qJ, discussed in Section 2.2, which consists of 
exact solutions to the aforementioned system of field equations, is thus a 
one-parameter family of suitably chosen cross sections of the vector bundle 
~1/'. In the rest of this paper, we shall always make such an identification. 

Put 

Co(X) := C(~,X)l,=0 = g~o~(X) 0 U~o)(X) ~) 1 O 1 (3.18) 

so that the mapping x ~ Co(x) is a "representation" of the background 
solution. An infinitesimal perturbation considered at x e X is by definition 
a pair (Co(x),P(x)) in which Co(x) and P(x) are given by equation (3.18) and 

p(x) :=  t ~ / , , =  ~ (3.19) 

respectively. In view of equations (2.8) and (3.12), we conclude that 

P(x) = Q(x) G U(x) �9 M(x) �9 K(x) (3.20) 

where 

and 

Q(x) := Q~f~(x)b~f~ E Vx (3.21 a) 

U(x): = U~'(x)b,~ ~ Wx (3.2 l b) 

Further, from equations (2.8c) and (3.12) it follows that M(x) e Rt and K(x) 
R2. Consequently, P(x) is an element of W'x. By abuse of language, instead 

of saying that (C0,P) is an infinitesimal perturbation, we shall also say that 
P itself is an infinitesimal perturbation. 

Clearly, using the background solution ~0 and the mapping x ~ P(x), 
one can easily calculate the tangent ~ 0  satisfying equation (2.10). In this 
way of thinking, the mapping 

X ~ x ~ P(x) E %l/'x (3.22) 

can be interpreted as a solution to the linearized system of field equations. 
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Another remark is also in order. In the discussion of direct sums of 
families of vector spaces [see Greub (1975, p. 56)] it will be convenient not 
to distinguish between Vx, Wx, Rt, and R2 and their images in ~ under the 
canonical injections, but to regard them as the same vector spaces. Thus, for 
notational convenience, the images in ~162 of V~, Wx, Rl, R2 are simply denoted 
by Vx, W~, RI, R2, respectively. Obviously, because of this convention, we 
are justified in saying that the contravariant metric tensor g_(r is an element 
of ~4cx. The same conclusion holds for u(e,x), a(r and T(e,x). However, it 
will always be clear from the context whether, e.g., the interpretation g(e,x) 

V~ or g(e,x) E ~r is meant. 

3.3. The  Lie Derivat ive  

We have already remarked in Section 2.2 that if 

v = v~b~ (3.23) 

is an arbitrary vector field on X, then ~q3o and ~30 + ~v~3o represent the 
same physical perturbation. Here, of course, ~v~3o gives rise to the notion of 
the Lie derivative ,~v with respect to v. To analyze the action of ~ on the 
background tensor fields, it is helpful and natural to choose a coordinate 
system (x ~) on X so that the unperturbed objects g(0) and U(o) are defined by 
equations (3.7) and (3.9) and the background scalar quantities no, To are 
functions of the time coordinate t := x ~ only. (This always can be done 
locally in any region of space-time.) Thus we obtain for ~g(0), Ss ~,~0, 
and .~T  0 the following formulas (Choquet-Bruhat et al., 1989): 

~g(o) = 2v~ + 2( -R-2~rpv~ + vro)bor 

- [2R-2v~ r~ + R-2(~)rpvSp + ~spvr~)]brs (3.24a) 

~vU(o) = -V.~ob,~ (3.24b) 

~s = V~ ~ T 0  = v~ (3.24c) 

where a comma denotes the partial derivative in X and an overdot indicates 
differentiation with respect to time. As to the meaning of H, this is Hubble's 
parameter given by 

H := RIR (3.25) 

Turning our attention back to equation (3.18) and its interpretation, what 
we must do now is to specify explicitly the action of ~v on Co. After a bit 
of mathematical manipulation which employs only the obvious definition 

~Jo := ((.~vg(o)) ~'1~, (~U(o)) '~, ~,,no, ~,,To) (3.26) 
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we find from equation (3.16) that the "best" expression for ~vCo, in the 
sense that it comes nearest to ~q3o, is given by 

~ o o  := 1 ~ n o  = I vOri ~ = _3vO H 
no no 

1 1 vO:r ~ 
:= goo :evro= 

where 

(3.27) 

(3.28a) 

(3.28b) 

In obtaining equation (3.28a), we have made use of the fact that no = -3noH 
(Peebles, 1993). Since the operation ~ A  on a tensor A produces a tensor of 
the same rank as A, the mapping 

X ~ x ~ (~vCo)(X) ~ W'. (3.29) 

can be viewed as a cross section of ~ 
The set consisting of the mappings (3.29) for all differentiable vector 

fields v on X is written @o; this set carries a natural structure of a vector 
space. Clearly, {90 is a subspace of the space (9 whose elements are classical 
solutions to the linearized system o f  f ie ld  equations. Two infinitesimal pertur- 
bations P ~ {9 and P' e {9 will be taken to be equivalent if there is a vector 
field v on X such that P'  = P + ~vCo. Strictly speaking, then, the object of 
most physical interest is not just one perturbation P, but a whole equivalence 
class of all perturbations P'  which are equivalent to P. This equivalence class 
is denoted [P] and is called the gauge-invariant  perturbation associated with 
P. Thus the gauge-invariant perturbations are elements of {9/{9o, the quotient 
space of {9 by {90 (Choquet-Bruhat et al., 1989). The essential point in the 
theory of gauge-invariant perturbations is to describe the elements of this 
quotient space explicitly. These issues will be discussed in Section 6. 

Finally, we pass to the problem of calculating ~,Co. By combining 
equations (3.24) and (3.27), it is only a matter of labor to prove that 

where 

- V~ @ bo) - (BrPv~ 4, + 8spvr, p)(R-2brs) 

- 2(R- I~rpv~ - RV~o)(R - I b o r  ) - RV~,o(R - l b,) 

b ~  ~ v~ c ~ x ,  

1 ~ R~ C ~ x ,  

(3.30) 

b ,  ~ Wx C ~ (3.31a) 

-(3HTo)-~i"o ~ R2 C W'x (3.31b) 
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Because of the identification rule of Section 3.2, in equation (3.30) no distinc- 
tion is made between the external and internal direct sums (Greub, 1975). 
Moreover, the dependence of  no, To, R, H, and v '~ on t or x is not shown 
explicitly, in order to make the resulting formulas shorter. What equation 
(3.30) really entails, and why it should be important, will be discussed more 
carefully in Section 4.1. 

3.4. The Scalar Product in W'~ 

To carry on the intended analysis of the properties of  gauge-invariant 
perturbations, it is useful to define a scalar product in ~/'.~. Based on the 
notion of a background solution, we arrive in fact at the canonical definition 
by using the covariant image of g(e,x)~,= 0 (which is the k = 0 Robertson- 
Walker metric tensor gRW) and the unperturbed four-velocity vector (which 
is given by uto~(x) = b0). Thus, for an almost-Robertson-Walker universe 
model, the symmetry is broken by the existence of  a preferred vector field 
ut0). This "phenomenon" of symmetry breaking plays an important role in 
the present formulation of perturbation theory, because it enables us to under- 
stand the meaning of the following construction: 

1. Let W~.I be a linear closure of {u~0~(x)}, and denote by W~.2 the 
g.RW-orthogonal complement of  W,~,l. Clearly, W~.l and W~.2 are vector sub- 
spaces of Wx; moreover, we have 

Wx = W~,l ~) Wx.z (3.32) 

2. Next, define the vector subspaces V.,.t, V~.2, and Vx.3 of Vx by setting 

Vx.l :=  W~., | Wx., 

Vx, 2 := l-I(Wx. 1 | Wx.2) 

G.3 := II(W~.2 | Wx,2) 

(3.33a) 

(3.33b) 

(3.33c) 

Here Vxa is the image space of  the symmetrizer I-I in Wx.l | W~.2 and Vx.3 
is the image space of the symmetrizer 1-I in W~,2 | Wx.2 (Meyer and Schr0ter, 
1981; Banach and Piekarski, 1989). Given the definitions (3.33), we can 
easily verify that 

V~ = Vx,~ @ Vx.2 @ Vx.3 (3.34) 

is a decomposition of Vx as a direct sum of Vx.b Vx,2, and Vx,3. 
3. Clearly, {bo} is a basis of  Wx, l and {boo} is a basis of  Vx, l. Also, any 

element of Wx.2 and Vx.2 can be written as a linear combination of "vectors" 
in {br; r = 1,2,3} and {boa r = 1,2,3}, respectively. Finally, the set 
{brs; r,s = 1,2,3} is a system of generators for V~.3. To make ~tc~ into an 
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inner product space (Greub, 1975), we determine the scalar product (',')x in 
W',. such that the following conditions hold: 

(b0, b0)~ := -g~W(b0, bo) = 1 

(b ,  bs)x :=  gxaW(b, b.0 = R2(t)~rs 

(boo, boo)x := [--gxRW(bo, b0)] 2 = 1 

__ I ~RW[/.. (bo,, bos)x := ~ x  ~'0, bo)gRxW(b,, b~) = -~R2(t)Sr~ 

(bij, br.,)x := 

(3.35a) 

(3.35b) 

(3.36a) 

(3.36b) 

1 RW ~[gx (bi, br)gRxW(bj, bs) + gnxW(b,, bs)gnxW(bj, br)] 

= IR4(l)(~ir~js + ~is~jr) (3.36C) 

Now, it is important to observe that equations (3.35) and (3.36) are not 
independent, because the scalar products in Wx, t and Wx.2 induce the scalar 
products in Vx, I, Vx.2, and Vx,3. [By way of digression, an analogous problem 
which has been solved was mentioned by Emch (1972) in his discussion of  
the properties of the scalar product for Fock space.] 

4. We have then, up to here, constructed the scalar products for Wx.t, 
Wxo2, Vx.i, Vt.2 and Vx. 3. As regards Rl and R 2  (R, = R 2 = R), the set of real 
numbers R is a vector space together with a binary law of composition (.,-)~: 
R • R ~ R defined by 

(y,z)~ := y �9 z, y,z E R (3.37) 

In this way R~ and R2 become inner product spaces as well. 
5. Starting from these definitions and using the decomposition 

~/'x = V~,l (~ V~,2 G Vx,3 G W~,l • W~.2 G RI G R2 (3.38) 

we can easily introduce a natural scalar product in ~ The general idea is 
in fact quite simple (Greub, 1975). Consider first the inner product spaces 
Vx,~ and Vx,2. Prove that a scalar product is given in the direct sum 
Vx, i �9 V~,2 by 

(Yl (~ Y2, Zl (~ Z2)x : =  (Yl, Zl)x + (Y2, Z2)x (3 .39)  

where y~, zt ~ Vx, t and Y2, z2 ~ V~,2. This construction can now be repeated 
for (V~,l �9 V~,2) �9 Vx.3 with the inner product spaces Vx.l E3 Vx,2 and Vx,3 
playing the role previously played by Vx,~ and V~,2. In the last step we obtain 
the bilinear function (y,z)x, which is a scalar product in ~1/'~. 

These remarks end our discussion concerning the definition of a scalar 
product in ~W~. As we shall see in Sections 4 and 5, the existence of (Y,Z)x 
and similar objects ensures the possibility of  a systematic derivation of the 
countably infinite set of  gauge-invariant variables. 
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4. SOME E L E M E N T A R Y  GAUGE-INVARIANT Q U A N T I T I E S  

4.1. Generalities 

With the scalar product of  Section 3.4, we may ask now if there is some 
natural procedure for introducing the notion of  a gauge-invariant quantity. It 
turns out that we can define the gauge-invariant quantities as follows. Let 
~x be the set of  h E ~1r such that the scalar product (h,~vC0)~ vanishes for 
all differentiable vector fields v on X: 

~x := {h e W'x: A (h, ~C0)~ = 0} (4.1) 
v 

Clearly, ~ is a subspace of  W~. Given the bilinear function (.,.)x, we denote 
by ~ the set of  all "vectors" which are orthogonal to ~x. ~ is again a 
subspace of Wx and the intersection ~ f-) ~ consists of  the zero-vector 
only. As a corollary, we have the decomposition 

W~, = ~ ,  @ @~, (4.2) 

Put 

:=  U ~x (4.3) 
xEX 

A glance at equation (3.14) shows that ~ is a vector subbundle of  W. Let 
h: X ~ ~ be a cross section of ~ (this cross section is not necessarily 
continuous), and suppose that [P] is a gauge-invariant perturbation associated 
with P. If P'  ~ [P], one then obtains 

(h, P)x = (h, P')x (4.4) 

An equivalent statement is that 

Jh(x) := (h, P)x (4.5) 

represents a gauge-invariant quantity induced by h. 
What are the simplest gauge-invariant quantities in an almost-Robertson- 

Walker universe model? Since dim ~x = 2, we can easily determine them 
by specifying two elementary cross sections hi and h2 of  ~ such that {ht(x), 
h2(x)} forms a basis of  ~x for each x ~ X, and then describing the action 
of (hi, ")~ and (h2, ")~ on P(x): 

• :=  Jl(X) := (hi, P)~ (4.6a) 

F(x) := J2(x) := (h2, P)~ (4.6b) 

However, to carry this out, we must first construct a moving frame for the 
vector bundle ~ := U ~ over X. 

x ~ X  
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4.2. Specification of X and U 

Consider equation (3.30) for (~,,C0)(x). Since the values of v '~ and v~ 
can be chosen arbitrarily at a fixed point x e X, each "vector" (~s is 
to be a linear combination off0, f0,, f~s, f,, a n d f  (r,s = 1,2,3); by definition, 
we have 

fo :=  -2b0o �9 bo E Vx: �9 Wx.t C ~ x (4.7a) 

fOr := R-lbor E Vx.2 C ~ (4.7b) 

frs : =  R-2brs ~ Vx.3 C ~ (4.7c) 

f ,  := R-Ib, e Wx,2 C ~ x (4.7d) 

f : =  1 G (-(3HT0)-lT0) e Ri �9 R2 C ~ (4.7e) 

In fact, it follows from the above definitions that the vectors f0, f0,, frs, f,, f 
are mutually orthogonal and hence they form a basis of ~ .  The dimension 
of ~ is therefore 14. Since dim ~ = 16, we then find that 

dim ~ = dim ~ x - dim ~ = 16 - 14 = 2 (4.8) 

Passing over to the orthogonal complement of ~ ,  we obtain a basis 
{hi(x), h2(x)} of ~x by the Schmidt-orthogonalization process (Szeg6, 1939) 

hi := boo D 2bo ~ Vx: G W~,I C ~ (4.9a) 

h2 := (3HTo)-l/'0 �9 1 ~ Ri �9 R2 C ~ (4.9b) 

We can now use equations (3.20), (3.21), and (4.6) to compute the gauge- 
invariant quantities • and F(x) in the usual fashion, showing that 

X(X) = Q~176 + 2U~ (4.10a) 

and 

F(x) = K(x) + (3HTo)-1ToM(x) (4.10b) 

An equation for • can also be obtained from the condition u~(~,x)u~(e,x) 
= - 1 ,  with the result 

- (  a(u~u'~)] = 0 (4.11) 
X =  \ at ],,=0 

Thus the gauge-invariant quantity • will not be physically significant to 
us in considering linearization about the Robertson-Walker universe models. 
This conclusion, however, does not mean that the identity X = 0 is not 
mathematically important; it will be used in Section 6. As to the physical 
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interpretation of F, in a companion paper (Banach and Piekarski, 1996) we 
prove that this quantity is proportional to the entropy perturbation 8s. 

Because of equation (4.2), one is of course free to write the infinitesimal 
perturbation P(x) at x e X as a sum of two distinctive parts: the first part 
represents the orthogonal projection of P(x) onto ~x, whereas the second 
part lies in ~ ,  and is given by 

1 1 
Pu(x) = 5  • + I + F(x)h2 

= 1 + l F(x)h2 (4.12) 

Since there is a natural scalar product in ~W'~, there is also a natural norm by 
which "smallness" of P(x) can be measured. An adequate definition of 
"smallness" in this context is that 

IIP(x)ll :=  ((P, PL)  ta (4.13a) 

or 

IlPn(x)ll :=  ((P., PH)x) I/2 (4.13b) 

be much smaller than 1 in some region of space-time. 
Finally, one important point should be noticed. The norm IlPn(x)ll is 

completely independent of the gauge chosen. However, the norm of P(x) is 
not gauge invariant: it can be assigned any value we like at any event by an 
appropriate choice of the vector field v in P(x) + (~,C0)(x). 

4.3. Difficulties with the Simple Theory 

As is clear from the discussion so far in this paper, the gauge-invariant 
variables • and F are not sufficient to represent the "point" [P] of the quotient 
space ~ / ~ 0  explicitly. One could have circumvented these sorts of difficulties 
altogether if one had chosen, at the outset, to consider carefully the degrees 
of freedom associated with the first-, second-, and higher order covariant 
derivatives of g(e,x), u(e,x), n(e,x), and T(e,x) with respect to g.RW. In that 
case, one would have been led to introduce as the basic object of one's theory 
the generalization of the notion of an infinitesimal perturbation at a point 
x E X, which contains more information about the behavior of the fields Q, 
U, M, and K in a neighborhood ofx, By means of such a generalization, one 
could then proceed with complete rigor in deriving many further gauge- 
invariant variables for an almost-Robertson-Walker universe model. This is 
the objective of Section 5. 
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5. P R O L O N G A T I O N  O F  T H E  O R I G I N A L  S T R U C T U R E S  

5.1. Differentiation of the Number Density 

In physical cosmology (Pebbles, 1993), the most interesting gauge- 
invariant quantities are those involving the temporal and spatial gradients of  
the number density n(t,x). We can represent these gradients by 

1 On(t, x) 
n~(t, x) : = (5.1) 

no(t) Ox ~ 

Because of  equations (2.8c), we find that 

(an:(t, x)) 
M'~(x) := \ at , , = 0  - - -  

1 a(no(t)M(x)) 

n0(t) ax ~ 
(5.2) 

Let {b"} be a basis of one-forms dual to a coordinate basis {b,,}. Then 
n/,(e,x) are the components of  

n ' ( t ,  x) := n'(e, x)b ~ e W~x (5.3) 

with respect to {b'~}; here W* denotes the vector space dual to W~. Also, it 
will be convenient to set 

M'(x) :=  M'(x)b ~ ~ W* (5.4) 

Clearly, the decomposition Wx = Wx.l �9 W~.z implies that W* is a direct sum 
of two dual subspaces W*l and W*2: 

W* := W*, @ W*2 (5.5) 

Using equation (3.6), we define the scalar product (y,z)~ in ~ by 

(b ~ b~ := -g~o)x(b ~ b ~ = 1 (5.6a) 

and 

(b r, bS)x := go~x)(b r, b s) = R-2(t)~ ~s (5.6b) 

If y and z are general linear combinations of  b ~ and b ~, the value of (y,Z)x 
can then be calculated explicitly and expressed in terms of (b~176 and (brt2)x 
[see Problem 4 in Greub (1975, p. 191)]. In this way W* becomes an inner 
product space. Finally, we shall simply write 

~ := V x O  W x ~ R l  G R 2 ~ 3  W* (5.7) 

and it is to be understood that ~ is an inner product space as well. 
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We continue to denote the infinitesimal perturbation at a point x E X 
by P(x), but it is now regarded as a member of Vx (9 Wx (9 RI (9 R2 (9 
W*, and defined by the following condition: 

p(x) := ~,=o (5.8) 

in which C(~,x) stands for 

C(~,x) := g(e,x) (9 u(~,x) (9 n(~,x) (9 T(~,x) (9 n'(~,x) (5.9) 

Hence 

P(x) = Q(x) (9 U(x) (9 M(x) �9 K(x) (9 M'(x) (5.10) 

The counterpart of equation (3.27) is then 

~ C o  : = ~g(o) (9 ~U~o) (9 , ~ o  (9 ,,~To (9 (~,,no)' (5. I 1) 

where 

(~no) '  : = (no)- I(~o),~b~ = (~ ) -  I(v~ b~ (5.12) 

As in equation (4.2), we can obtain a decomposition 

~ x  = ~ex (9 ~x (5.13) 

such that all the definitions and all the observations of Section 4.1, with the 
exception of the interpretation of ~,C0, remain valid when we replace equation 
(3.27) by equation (5.11) in the statements and proofs. 

It is readily confirmed by substituting for .-~.g(o), ~,,U(o), ,.~,no, ~To ,  and 
(~,,n0)' from equations (3.24), (3.28), and (5.12) into equation (5.11) that 
(2L, Co)(X) takes the form 

(-(3Hno)-l(no)'b~ - v.~ (9 bo ~ (-b~ @ 

- (g'~v~ + 8Wv~)(R-2b~.O 

,,v,o)[( ] 
+l(18rpv~ (5.14, 
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with summation over r, s, p = 
ho, hot} of ~ may be written as 

hm := boo ~ 2bo E V~,l ~) W~,l C ~t/'~ 

h2 := (3HTo)-l~/'o ~ 1 ~ Rl ~ R2 C ~l/'x 

1 
ho "= - ~  boo ~) (3Hrio)-I(no)" ~) b ~ ~ V~,l ~ Ri �9 W*l C ~ x 

1 1 
hor := ~ bor (~) ~ br (~ gb" ~ Vx,21~) Wx.2 ~) W* 2 C ~t/" x 

1,2,3 assumed, so the required basis {hb h2, 

(5.15a) 

(5.15b) 

(5.15c) 

(5.15d) 

where r = 1, 2, 3. This basis is not orthogonal. However, starting out with 
{h~, h2, ho, ho~}, a new basis can be constructed whose vectors are mutually 
orthogonal. Inspection shows that dim ~ = 6 and dim ~x = 14; thus dim 
~4;x = 20. 

Once the basis of ~ has been put into the explicit form, the construction 
of the gauge-invariant quantities 

X(X) := Jl(x) := (ht, P)x 

F(x)  : =  J2(x) : =  (h2, P)x 

~(x) := Jo(x) := (ho, P)x 

l ) ~ ( x )  : = - 3 R H J o X x )  : = - 3RH(hor, P)x 

(5.16a) 

(5.16b) 

(5.16c) 

(5 .16d)  

is extremely simple, for the expressions in equations (5.16) become 

• = Q~176 + 2U~ (5.17a) 

F(x) = K(x) + (3HTo)- I]'oM(x) (5.17b) 

1 1 
~(x )  = --~ Qoo(x) + -~ H-z[I;tM(x) - n2f/(x)] (5.17c) 

3M 
~r(x) = -3R2HQ~ - 3R2HUr(x) + ~ ' - -  (5.17d) 

Ox �9 

Here it is perhaps important to recall that Q~lS(x) and U~'(x) are related to 
Q(x) and U(x) by equations (3.21a) and (3.21b) [see also equation (2.8a) for 
the definition of Q"~(x) and U~(x)]. Clearly, in order to obtain equations 
(5.17) from equations (5.16), we have used 

rio = - 3noH (5.18a) 

and 

(no)" = -3noi:1 + 9noH 2 (5.18b) 
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We stress that the objects X, F, f l ,  and f l  r are gauge-invariant quantities. 
The physical importance of equations (5.17) follows from the fact that they 
are all necessary to give a tractable and explicit description of the elements 
P of a quotient space ~ /~0 ;  this is the problem of most fundamental interest. 
In a companion paper (Banach and Piekarski, 1996) we demonstrate that, to 
first order in the deviations from the background solution, the quantity 
noR-21~l r represents the gauge-invariant spatial gradient of the number density 
n. However, the validity or utility of our definitions does not depend on this 
interpretation. As an illustration, the gauge-invariant object f i  has a more 
remote physical significance; in a synchronous gauge (Q00 = aOr = 0 )  it 
gives us information about the time variation of the density contrast M. 
Nevertheless, this object is absolutely necessary to define a "coordinate 
system" for the unique description of ~ /~0 .  

It is always possible to decompose our basic variables harmonically, 
thus separating out the time and space variations; this is done in Banach and 
Piekarski (1996, Section 6), where comparisons with the interesting methods 
of Bardeen (1980) and Ellis and Bruni (1989) are also made. 

5.2. A Complete Set of Basic Gauge-Invariant Quantities 

In Section 5.1, we obtained two independent gauge-invariant quantities 
f i  and O r that code the information we need to discuss density inhomogeneities 
in an almost-Robertson-Walker universe model. The starting point for the 
analysis was a "prolonged" vector space Vx ~3 Wx q) Rt �9 R2 �9 W* together 
with an appropriate scalar product (Y,Z}x. Since l'l and O r are linear in first 
derivatives of the density contrast M, one might ask whether modifying a 
definition of the prolonged vector space might not give an extended set of 
gauge-invariant variables. Such is indeed the case. However, for lack of space 
we will not present here all the details concerning this modification, but 
suffice it to say that if a suitable hierarchy of prolonged vector spaces is known, 
a countably infinite set of gauge-invariant quantities can be systematically 
constructed. In fact, given this hierarchy, it will be possible to find many 
further gauge-invariant quantities by using the standard procedure of ortho- 
gonalization (the Schmidt orthogonalization). Among the problems that can 
be studied with this sort of approach, an explicit description of the elements 
of the quotient space ~ /~0  presents a most interesting challenge (see Section 
6). However, before proceeding to examine this issue, we first introduce a 
complete set of basic gauge-invariant variables. (The details of the construc- 
tion, which are very much analogous to those of Section 5.1, are available 
on request.) 
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We start our discussion as follows. In an almost-Robertson-Walker 
universe model, one can choose coordinates so that the unperturbed metric 
tensor gx Rw has the form (Misner et al., 1973) 

gRxW = - b  oo + [R(t)lto(x)]2~r~b rs (5.19a) 

where 

to(x) := 1 + (k/4)[(xl) 2 + (x2) 2 + (x3) 2] (5.19b) 

and where k is the (constant) spatial curvature. By an appropriate choice of 
units, the value of k can be made to be + l, - l ,  or 0. The corresponding 
solutions for the expansion factor R(t) represent, respectively, spaces of 
positive or negative curvature or flat space. The tensor ~/x given by 

~/x := [1/to(x)]E~rs brs = "Yrs brs (5.20) 

is the metric tensor of a three-space of uniform spatial curvature k. Let a 
slash denote the covariant derivative o f  a three-tensor with respect to ~lx. 
The components of ~x are ~/r.~ = (1/to)28rs. Knowing "Yrs, we define the 
contravariant tensor ~/rs by 7 rs = to2~rs. 

With all these definitions in mind, a complete set of basic gauge-invariant 
variables is given by 

X := Qoo + 2/-l~ (5.21a) 

F := K + (3HTo)-1i"o M (5.21b) 

f l  "= -�89 + +H-2(HM - HM) (5.21c) 

f l  r = -3R2HQ ~ - 3R2HU r + ~lrSMts (5.2 ld) 

3 QOO ( + -~-~ Qrs) + -~I U~,~ + H-2I:tM (5.21e) A "= - - 2  _ R2~rs QrS 1 1 

( ' ) '  Ar.  . =  R2 + Ors _ Us +  ,,Vr ) 

__ 1 R2,~pq Qpq § 0 pq ~f rs + ~ UPlp~ rs (5.21f) 
3 

S ijrs :~- kZP[i('~l~r~p --  ~d']S~) § "~sq~p[izj]rlp q - "yrq~p[izj]Slp q (5.21g) 

where ~, is the Kronecker delta, M~s = Ms, and 

2 '  r$ 
U s := -RZQ rs + -~a~ I (5.22) 

Here the antisymmetric part of At0...s is distinguished by square brackets. 
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Inspection shows that X vanishes identically and that ~/~,A ~s = 0. A complete 
set of symmetry conditions for S 'm is Siirs = S ['j]tr~] and Sitm] = 0; thus 
there are six linearly independent, not identically vanishing components in 
{SiJr~li, j, r, s = 1, 2, 3}. 

The gauge-invariant objects A and S 'j~ have no direct physical meaning, 
except for the fact that they are constructed from the metric and matter 
perturbations. As regards the traceless three-tensor A ~~, it is possible to show 
that, to first order in the deviations from the background solution, this gauge- 
invariant quantity has a direct physical interpretation in terms o f  the shear 
of  the matter velocity field (Banach and Piekarski, 1996). The basic role of 
equations (5.21) is in essence that of a guarantor for the existence of a unique 
and transparent description of ~ / ~ 0  (see Section 6). 

In the present approach, we proceeded in a manner similar to the process 
for diagonalizing a quadratic function, obtaining coordinates (x ~) for which 
the background metric and the gauge-invariant tensor fields have as simple 
a form as possible. Since symmetry is broken by the existence of a background 
solution for the fluid four-velocity u, our formulation of perturbation theory 
in terms of a privileged system of coordinates should be considered a substan- 
tial labor-saving device. Of course, the construction of (x ~) is not unique, 
because we can easily introduce new coordinate systems on X for which the 
decomposition (5.19a) holds, once one choice of (x ~) has been made. 

6. EXPL IC IT  DESCRIPTION OF T H E  QUOTIENT SPACE 

Given a complete set of basic gauge-invariant variables, we can now 
formulate our main theorem. From this theorem it follows that two infinitesi- 
mal perturbations ~30 and 8q36 are equivalent if (and only if) they determine 
one common set o f  basic gauge-invariant variables, i.e., if (and only if) D 
= D',  where D denotes a basic set [see equation (6.10) for the definition of D]. 

Theorem. Let Q~I3, U,~, M, and K be functions of class C ~ (r sufficiently 
large) on a differentiable manifold X, and suppose that these functions obey 
the following conditions: 

•  F = 0 ,  f ~ = 0 ,  A = 0  

~'~r = 0 ,  mrs = 0 ,  S ijrs = 0 

Then there exists a vector field v ~ on X such that 

QOO = 2~o 

Q0r= _R-2~WvOr, + or, V01. ~___ V O 

Qrs = _2R-2HvO~r~ _ R-2(~lwv~lp + yev[p) 

(6. I a) 

(6.1b) 

(6.2a) 

(6.2b) 

(6.2c) 
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U ~ = - r  (6.2d) 

M = 1 vOti ~ = _ 3 H v  o (6.2e) 
no 

1 v07, ~ (6.20 K=~ 
R e m a r k .  Interpreting this theorem, equations (6.1) and (6.2) imply that 

the infinitesimal perturbation ~q30 := (Q'~a, U '~, noM, ToK) can be identified 
with the Lie derivative 

~vqjo := ((,~vgco)) '~13, (~U(o)) ~', ~,,no, ,~To) 

of the background solution q3o := ((gco)) '~13, (Ur '~, no, To) with respect to the 
aforementioned vector field v. Clearly, such a perturbation is a "gauge mode" 
solution of equation (2.10). 

S k e t c h  o f  t h e  p r o o f  Write 

v ~ "= (iZo)- I n o M  = - 
1 

3H M (6.3) 

and define the functions v l, v 2, and v 3 by saying that they satisfy the differential 
equations of  the form 

O r =  - U  r, r =  1 , 2 , 3  (6.4) 

This trivially proves equation (6.2e) and equation (6.2d) for ct = l, 2, 3. 
Because of F = 0 and f l  = 0, K equals Tffo l v~ QOO equals 29 ~ and equations 
(6.2f) and (6.2a) hold. Then we may conclude from X = 0 that equation 
(6.2d) is valid for a = 0 as well. After substituting equations (6.2d) and 
(6.2e) into the left-hand side of lq r -- 0, we immediately arrive at equations 
(6.2b). Given the definition (6.3) of v ~ we now set [see equations (5.22) 
and (6.2e)] 

2 rs _ R Z Q ~ S  Z ~ "=  - R 2 Q  ~ + ~M~I  = - 2 H v ~  ~ (6.5) 

Hence the conditions A = 0 and A ~s = 0 take the form 

zr$ : ,~rP~Slp + ,,ysp~)rlp (6.6) 

Because of  tb = 0, this is equivalent to 

Z rs = '~rpVSlp q- ~lSPlfl'lp + "O rs (6.7) 

where {~}  is the second-rank, symmetric three-tensor whose components 
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u rs are independent of time. Further, as an explicit application of  the condition 
Sijrs = 0, we derive the differential equations for v~~(x~,x/,x3): 

],cijpli(4]r~; __ ~j].,r~;) "t- "~sq'~pli~jlrlp q - -  ~rq'~p[i'13J]Slp q : 0 (6.8) 

However, equation (6.8) is a necessary  and suff icient  condition [Truesdell 
and Toupin (1960), equation (84.12), p. 352] that, given a symmetric tensor 
v~(xt,xZ,x3), there exists a vector field vr(xl,x2,x 3) such that 3 

V rs = "~/rp'OSlp "q- "~lspvrlp (6.9) 

Of course, since 9 r = V + 1) ~ = - U  r, we may always choose to replace v r 
by v r + u r Hence if we suppose the vector field v r so adjusted that u r = 0, 
by combining equations (6.5), (6.7), and (6.9) we obtain equation (6.2c). 
This completes the proof of our theorem. �9 

To go into further detail regarding a gauge-invariant formulation of 
perturbation theory would take more space than is available here and would 
yield the conclusions and observations which we present in a companion 
paper (Banach and Piekarski, 1996). The outline already given satisfies the 
purpose of this paper: to show that a complete set of basic gauge-invariant 
variables, applied to an almost-Robertson-Walker universe model (k = - 1, 
0, +1), suffices to obtain an explicit description of [P] E ~ / ~ 0 .  In fact, 
there is something very special about the way the basic set 

D := {X, F, ~~, ~'~r, m., A rs, SiJ rs} (6.10) 

is related to the gauge-invariant perturbation [P], for we can uniquely  recover 
[P] from D and conversely. 

To see this, it is easiest to start with two infinitesimal perturbations P 
and P '  (P 4: P ' )  such that D = D' ,  where D and D'  are the corresponding 
sets of basic variables. (Here we recall that these infinitesimal perturbations 
are solutions of the gauge-dependent propagation equations). However, 
according to our theorem, in linear perturbation theory the relation D = D'  
is equivalent to saying that P '  = P + ,~,,C0 for some v (v q: 0). Hence P 
and P '  differ by the action of  an "infinitesimal diffeomorphism" on the 
background solution and any fixed set D can be used to extract [P] from D 
in a unique way. This in turn means that D " is"  a gauge-invariant perturbation: 

[P] r D (6.11) 

In other words, the correspondence (6.11) defines a bijection A from 
~ / ~ 0  onto the "vector space" ~ such that if [P] E ~ / ~ 0 ,  then A([P]) = 

3The notation of Truesdell and Toupin (1960) differs from that of ours as follows: they denote 
by .,R0".~ the covariant derivative of A40..'r with respect to Xrs. 
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D is a set of basic gauge-invariant variables associated with [P]. We call 
the image space of @/~0 under A or simply the image space of @/~0. 
Clearly, from these observations we infer that D := {• F, D~ fl', A, A rs, 
S ijr~} belongs to ~b if (and only if) there is an infinitesimal perturbation P 
or bq30 satisfying equations (2.10) and (5.21) with 27 ~ given by (5.22); since 
A is a bijection, such perturbations always exist. This definition of ~ will 
be significant to us (Banach and Piekarski, 1996) in interpreting some of the 
solutions of gauge-invariant equations for gauge-invariant variables. Finally, 
we would like to mention that D contains a maximum number of independent 
variables, and any other gauge-invariant variable can be expressed in terms 
of D (see the Appendix). The total number of linearly independent, not 
identically vanishing components in D is 17. 

7. DISCUSSION AND CONCLUSION 

We have presented a totally gauge-invariant framework for studying 
perturbation theory away from homogeneous and isotropic cosmological 
models. The principal new results of this paper are contained in Sections 5.2 
and 6. Since physical perturbations can always be regarded as being the 
elements of a certain quotient space, the essential ingredient in the discussion 
was the definition and construction of a complete set of basic gauge-invaxiant 
variables in terms of which to describe the elements of this quotient space 
explicitly. An additional welcome feature is that, as shown in the Appendix, 
any other gauge-invariant quantity can be determined directly from these 
basic variables through purely algebraic and differential operations. The 
calculations were presented in some detail for the special case of a perturbed 
k = 0 Robertson-Walker space-time. The generalization to a three-space of 
uniform spatial curvature k (k = - 1, + 1) was then trivial, provided that, as 
in Smarr and Taubes (1980), one was willing to assume that a simple perfect- 
fluid description is appropriate. Much of the literature on relativistic hydro- 
dynamics considers a barotropic equation of state where the dependent vari- 
able is a function of only one quantity. Our discussion did not make this 
"unphysical" restriction: we have specified an equation of state that defines 
one function (n,e,p,T) in terms of two others, e.g., p = p(n,T). 

In the context of perturbation theory for general-relativistic perfect fluids, 
there will always be a preferred family of world lines representing the motion 
of typical observers in the background universe model. Thus we have adapted 
a coordinate system to these observers, so that b0 equals ut0). Specifically, 
we wrote out the components of gauge-invariant variables in such an adapted 
coordinate system without explicitly incorporating u~0) := (u)~,=0 into the 
equations of perturbation theory, but rather substituting everywhere the com- 
ponents u'~t0) = ~'~0 of u~0). At first sight, in this viewpoint, it would be 
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concluded that the equations are not tensor equations, because the components 
fail to transform according to the usual law under coordinate transformations. 
However, the "nontensorial" nature of the theory can only be attributed to 
a "failure" to explicitly incorporate the extra geometrical object u(0~ into the 
gauge-invariant variables. When this is done, perturbation theory will have 
a tensorial character, but the resulting equations will be rather more complex 
than those proposed here; thus they are not written here. However, there is 
no question that tightening a theory with further geometrical niceties always 
has merits. 

Of course, it would be of both practical and conceptual interest to extend 
the present approach to situations where preferred vector fields or preferred 
bases of vector fields no longer exist, for example, to cases of the most 
general matter-associated perturbations away from a flat space-time. To the 
best of our knowledge, even this standard problem must still be regarded as 
open. When the matter is not a perfect fluid, we may wish to study perturba- 
tions using a kinetic-theory description. Accordingly, it would also seem 
natural to find some kinetic-theory analogs of the techniques developed in 
this paper and then to apply these generalized techniques to the investigation 
of various problems related to the Einstein-Boltzmann coupled system of 
equations (Banach and Piekarski, 1994a, b; Banach and Makaruk, 1995). Since 
Boltzmann's equation involves infinitely many degrees of freedom, it remains 
to be seen how useful these modified techniques will prove there. While 
perhaps some deeper theory of gauge-invariant perturbations would not imply 
the resulting physical effects were large, it nevertheless seems an important 
question of principle. Although a complete set of basic gauge-invariant vari- 
ables corresponding to the conditions of general-relativistic kinetic theory 
has not yet been explicitly specified, we have already indicated how the 
calculation can be initiated in the case when the pressure vanishes in the 
background (Banach and Piekarski, 1994a). 

In this paper we have considered perturbation theory on the basis of 
Einstein's general theory of relativity. No purported inconsistency between 
experiment and Einstein's laws of gravity has ever surmounted the test of 
time. However, our treatment is sufficiently flexible and broadly based to 
cover also other theories of gravity, such as, e.g., the theory of Brans and 
Dicke (1961) or Stawianowski's (1994) nonmetric theory. This is because 
any viable theory of gravity contains a gauge freedom corresponding to the 
group of diffeomorphisms of space-time. In the linear approximation, this 
again implies that two perturbations represent the same physical perturbation 
if (and only if) they differ by the action of an "infinitesimal diffeomorphism" 
on the background solution. 

We hope to discuss all these modifications and generalizations in the 
future. Also deferred to a companion paper (Banach and Piekarski, 1996) 
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are (i) the derivation of a closed set of differential equations governing the 
evolution of D := {• F, fi, f l  r A, A "~, S ij's } and (ii) the physical interpretation 
of the basic gauge-invariant quantities. 

APPENDIX. FURTHER PROPERTIES OF THE BASIC 
VARIABLES 

In this appendix, we will prove that any complicated gauge-invariant 
object can be expressed in terms of a complete set of basic gauge-invariant 
variables. Precisely speaking, our purpose here is to show that the appropriate 
combinations and differentiations of equations (5.21) give all these objects 
directly from the basic variables X, F, ~ f ir  A, A rs, S ijrs through purely 
algebraic operations. 

In the present approach, when we speak of the complicated gauge- 
invariant quantity Jh(x), we always have in mind the following construction: 
To within the ambiguity concerning the precise definition of a suitably pro- 
longed inner product space q4/" x (a simple example of the operation of prolonga- 
tion of the original structures and a hint of what to expect may be obtained 
from considerations of Section 5), let ~x be the set of h ~ ~iCx such that the 
scalar product (h,~vCo)~ vanishes for all vector fields v on X. Consider the 
equivalence class of P, denoted [P], and let h: X ~ ~ := U ~ x  ~.~ be a 
cross section of ~ .  The gauge-invariant quantity Jh(X) will then coincide with 
(h,P')~, where P' is an arbitrary member of [P]; thus 

Jh(X) := (h,P')x, P' E [P] (A.I) 

Clearly, the value of Jh(X) is completely independent of the choice of 
P' e [P] and this conclusion holds for each x ~ X. As a result, (h,.)~ defines 
a mapping from @/~0 into R. Together with the identification rule [P] r 
D of Section 6, if we let D denote the system of real-valued functions • F, 

f l  r, A, A rs, S ijrs on X, the typical expression of this observation is 

Jh(X) = Fh(x,D), x e X (A.2) 

where Fh(X," ) denotes a functional, that is, a function whose arguments are 
functions D on X. 

But our constructions are local, since the original variables Q~a, U% M, 
K are allowed to enter the definition of P(x) e ~14cx only through Q~'~(x), 
U~'(x), M(x), K(x), and their space-time derivatives of order -<r; here r is an 
integer whose precise value depends on the choice of Jh(X). Moreover, all 
the definitions and all the results of this paper, especially the theorem of 
Section 6, remain valid when we replace X by any open set O C X in the 
statements and proofs. Hence we obtain 
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Jh(X) = Fh(X, Ol•), x ~ 0 (A.3) 

where Djo is the restriction of D to O. But this equation holds for all open 
subsets of X, however small. Thus a standard argument yields the conclusion 
that the value of Jh(x) is uniquely specified by giving the germs of functions 
D at x ~ X [see Choquet-Bruhat et al. (1989) for the definition of a germ]. 
With this additional conclusion, equation (A.3) is to be replaced by 

Jh(X) = Fh(X,Dx), X ~ X (A .4 )  

where the symbol Dx represents germs of functions D at x. 
On the other hand, if we relate P(x) to the original, gauge-dependent 

quantities, we get from (h,P)x an explicit expression for Jh(x) which tells us 
that Jh(x) is a linear combination of Q~a(x) ..... K(x) and their space-time 
derivatives of order -----r. Then in this combination we substitute the formulas 
that result from using the definitions (5.21) of  D, so obtaining a concrete 
form of equation (A.4). In this way, we are able to show that the following 
conclusion holds: The appropriate combinations and differentiations of equa- 
tions (5.21) give Jh(x) directly from the set D of basic variables through 
purely algebraic operations once r and h in Jh(x) have been specified. 

Illustrations of the above observation are given in a companion paper 
(Banach and Piekarski, 1996). 
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